Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures.
نویسندگان
چکیده
Power densities and oxidation-reduction potentials (ORPs) of MFCs containing a pure culture of Shewanella oneidensis MR-1 were compared to mixed cultures (wastewater inoculum) in cube shaped, 1-, 2-, and 3-bottle batch-fed MFC reactor configurations. The reactor architecture influenced the relative power produced by the different inocula, with the mixed culture generating 68-480% more power than MR-1 in each MFC configuration. The mixed culture produced the maximum power density of 858 +/- 9 mW m(-2) in the cubic MFC, while MR-1 produced 148 +/- 20 mW m(-2). The higher power by the mixed culture was primarily a result of lower internal resistances than those produced by the pure culture. Power was a direct function of ohmic resistance for the mixed culture, but not for strain MR-1. ORP of the anode compartment varied with reactor configuration and inoculum, and it was always negative during maximum power production but it did not vary in proportion to power output. The ORP varied primarily at the end of the cycle when substrate was depleted, with a change from a reductive environment during maximum power production (approximately -175 mV for mixed and approximately -210 mV for MR-1 in cubic MFCs), to an oxidative environment at the end of the batch cycle ( approximately 250 mV for mixed and approximately 300 mV for MR-1). Mixed cultures produced more power than MR-1 MFCs even though their redox potential was less negative. These results demonstrate that differences between power densities produced by pure and mixed cultures depend on the MFC architecture.
منابع مشابه
The influence of acidity on microbial fuel cells containing Shewanella oneidensis.
Microbial fuel cells (MFCs) traditionally operate at pH values between 6 and 8. However, the effect of pH on the growth and electron transfer abilities of Shewanella oneidensis MR-1 (wild-type) and DSP10 (spontaneous mutant), bacteria commonly used in MFCs, to electrodes has not been examined. Miniature MFCs using bare graphite felt electrodes and nanoporous polycarbonate membranes with MR-1 or...
متن کاملAggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride.
There are several interconnected metabolic pathways in bacteria essential for the conversion of carbon electron sources directly into electrical currents using microbial fuel cells (MFCs). This study establishes a direct exogenous method to increase power output from a Shewanella oneidensis MR-1 containing MFC by adding calcium chloride to the culture medium. The current output from each CaCl(2...
متن کاملOxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the prese...
متن کاملMicrofabricated Microbial Fuel Cell Arrays Reveal Electrochemically Active Microbes
Microbial fuel cells (MFCs) are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemic...
متن کاملOxygen exposure promotes fuel diversity for <i>Shewanella oneidensis</i> microbial fuel cells
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 105 3 شماره
صفحات -
تاریخ انتشار 2010